Đề thi tuyển sinh cao đẳng năm 2010 môn Toán Khối A
Câu I (2,0 điểm)
- Khảo sát sự biến thiên và vẽ đồ thị
của hàm số
.
- Viết phương trình tiếp tuyến của đồ thị
tại điểm có hoành độ bằng -1 .
Câu II (2,0 điểm)
- Giải phương trình
.
- Giải hệ phương trình
.
Câu III (1,0 điểm)
Tính tích phân .
Bạn đang xem tài liệu "Đề thi tuyển sinh cao đẳng năm 2010 môn Toán Khối A", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề thi tuyển sinh cao đẳng năm 2010 môn Toán Khối A

1 1A x xy = + ⋅ II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm và mặt phẳng (1; 2; 3),A − ( 1; 0; 1)B − ( ): 4 0.P x y z+ + + = 1. Tìm tọa độ hình chiếu vuông góc của A trên (P). 2. Viết phương trình mặt cầu (S) có bán kính bằng 6 , AB có tâm thuộc đường thẳng AB và (S) tiếp xúc với (P). Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện 2i z i z i− + + = − +(2 3 ) (4 ) (1 3 ) . Tìm phần thực và phần ảo của z. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1: 2 1 1 x y z− ( ): 2 2 2 0P x y z− + − = 2 (1 ) 6 3 0z i z i− + + + = d = = − và mặt phẳng . 1. Viết phương trình mặt phẳng chứa d và vuông góc với (P). 2. Tìm tọa độ điểm M thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng (P). Câu VII.b (1,0 điểm) Giải phương trình trên tập hợp các số phức. ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .............................................; Số báo danh: ................................
File đính kèm:
de_thi_tuyen_sinh_cao_dang_nam_2010_mon_toan_khoi_a.pdf