Đề thi minh họa THPT quốc gia năm 2015 môn Toán (Có đáp án)
Câu 1.(2,0 điểm) Cho hàm số .
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị , biết tiếp điểm có hoành độ
.
Câu 2.(1,0 điểm)
a) Cho góc thỏa mãn:
và
. Tính
.
b) Cho số phức thỏa mãn hệ thức:
. Tính môđun của
.
Câu 3. điểm) Giải phương trình:
.
Câu 4.(1,0 điểm) Giải bất phương trình: .
Bạn đang xem tài liệu "Đề thi minh họa THPT quốc gia năm 2015 môn Toán (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề thi minh họa THPT quốc gia năm 2015 môn Toán (Có đáp án)
Câu 7.(1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác OAB có các đỉnh A và B thuộc
đường thẳng : 4 3 12 0x y∆ + − = và điểm (6; 6)K là tâm đường tròn bàng tiếp góc O. Gọi C là điểm
nằm trên ∆ sao cho AC AO= và các điểm C, B nằm khác phía nhau so với điểm A. Biết điểm C có
hoành độ bằng 24 ,
5
tìm tọa độ của các đỉnh A, B.
Câu 8.(1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm (2; 0; 0)A và (1; 1; 1).B − Viết
phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm O, tiếp xúc
với (P).
Câu 9.(0,5 điểm) Hai thí sinh A và B tham gia một buổi thi vấn đáp. Cán bộ hỏi thi đưa cho mỗi thí
sinh một bộ câu hỏi thi gồm 10 câu hỏi khác nhau, được đựng trong 10 phong bì dán kín, có hình
thức giống hệt nhau, mỗi phong bì đựng 1 câu hỏi; thí sinh chọn 3 phong bì trong số đó để xác định
câu hỏi thi của mình. Biết rằng bộ 10 câu hỏi thi dành cho các thí sinh là như nhau, tính xác suất để 3
câu hỏi A chọn và 3 câu hỏi B chọn là giống nhau.
Câu 10.(1,0 điểm) Xét số thực x. Tìm giá trị nhỏ nhất của biểu thức sau:
2
2 2
3 2 2 1 1 1
3 2 3 3 3 2 3 3 3
+ +
= + +
+ − + + + +
( )
.
( ) ( )
x x
P
x x x x
----------- HẾT -----------
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN - THANG ĐIỂM
ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015
Môn: TOÁN
CÂU ĐÁP ÁN ĐIỂM
Câu 1
(2,0 điểm)
a) (1,0 điểm)
● Tập xác định: { }\ 1 .D = −
● Giới hạn và tiệm cận:
( 1)
lim
x
y
+→ −
= − ∞ ,
( 1)
lim
x
y
−→ −
= + ∞ ; lim lim 2.
x x
y y
→ −∞ → +∞
= =
Suy ra, đồ thị hàm số có một tiệm cận đứng là đường thẳng 1x = − và một
tiệm cận ngang là đường thẳng 2.y =
0,25
● Sự biến thiên:
- Chiều biến thiên: y' = 2
3
( 1)x + > 0 ∀x ∈ D.
Suy ra, hàm số đồng biến trên mỗi khoảng ( ); 1− ∞ − và ( )1;− + ∞ .
- Cực trị: Hàm số đã cho không có cực trị.
0,25
Lưu ý: Cho phép thí sinh không nêu kết luận về cực trị của hàm số.
- Bảng biến thiên:
x
– ∞ – 1 + ∞
y' + +
y + ∞ 2 2 – ∞
...iều kiện đó, ký hiệu (2) là phương trình đã cho, ta có:
(2) ⇔ 3 3log ( 2) log 1x x+ + = ⇔ 3 3log ( ( 2)) log 3x x + =
0,25
⇔ 2 2 3 0x x+ − = ⇔ 1x = (do (1)). 0,25
Câu 4
(1,0 điểm)
● Điều kiện xác định: 1 3.x ≥ + (1)
● Với điều kiện đó, ký hiệu (2) là bất phương trình đã cho, ta có:
(2) ⇔ 2 22 2 2 ( 1)( 2) 3( 2 2)x x x x x x x+ − + + − ≥ − −
0,25
⇔ ( 2)( 1) ( 2) 2( 1)x x x x x x− + ≥ − − +
⇔ ( )( )( 2) 2 ( 1) ( 2) ( 1) 0.x x x x x x− − + − + + ≤ (3)
Do với mọi x thỏa mãn (1), ta có ( 2) ( 1) 0x x x− + + > nên
(3) ⇔ ( 2) 2 ( 1)x x x− ≤ +
0,50
⇔ 2 6 4 0x x− − ≤
⇔ 3 13 3 13.x− ≤ ≤ + (4)
Kết hợp (1) và (4), ta được tập nghiệm của bất phương trình đã cho là:
1 3 ; 3 13 . + +
0,25
Câu 5
(1,0 điểm) Ta có:
2 2
3
1 1
2 d ln d .I x x x x= +∫ ∫ (1) 0,25
Đặt
2
3
1
1
2 dI x x= ∫ và
2
2
1
ln d .I x x= ∫ Ta có:
2
4
1
1
1 15
.
2 2
I x= =
0,25
2 2
2 2
2 1 1
1 1
.ln d(ln ) 2ln 2 d 2ln 2 2ln 2 1.I x x x x x x= − = − = − = −∫ ∫
Vậy 1 2
13 2 ln 2.
2
I I I= + = +
0,50
Câu 6
(1,0 điểm)
Theo giả thiết, 1
2
HA HC AC a= = = và SH ⊥ mp(ABC).
Xét ∆v. ABC, ta có: o.cos 2 .cos 30 3 .BC AC ACB a a= = =
0,25
Do đó o 21 1 3. .sin .2 . 3 .sin 30 .
2 2 2ABC
S AC BC ACB a a a= = =
Vậy
3
2
.
1 1 3 6
. . 2 . .
3 3 2 6S ABC ABC
aV SH S a a= = =
0,25
Vì CA = 2HA nên d(C, (SAB)) = 2d(H, (SAB)). (1)
Gọi N là trung điểm của AB, ta có HN là đường trung bình của ∆ABC.
Do đó HN // BC. Suy ra AB ⊥ HN. Lại có AB ⊥ SH nên AB ⊥ mp(SHN). Do đó
mp(SAB) ⊥ mp(SHN). Mà SN là giao tuyến của hai mặt phẳng vừa nêu, nên
trong mp(SHN), hạ HK ⊥ SN, ta có HK ⊥ mp(SAB).
Vì vậy d(H, (SAB)) = HK. Kết hợp với (1), suy ra d(C, (SAB)) = 2HK. (2)
0,25
Vì SH ⊥ mp(ABC) nên SH ⊥ HN. Xét ∆v. SHN, ta có:
2 2 2 2 2
1 1 1 1 1
.
2HK SH HN a HN
= + = +
Vì HN là đường trung bình của ∆ABC nên 1 3 .
2 2
aHN BC= =
Do đó 2 2 2 2
1 1 4 11
.
2 3 6HK a a a
= + = Suy ra 66 .
11
aHK = (3) ...y = −
Từ đó, trung điểm E của OC có tọa độ là 12 6;
5 5
−
và đường thẳng OC có
phương trình: 2 0.x y+ =
Suy ra phương trình của 1d là: 2 6 0.x y− − =
Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình:
{4 3 12 02 6 0.x yx y+ − =− − =
Giải hệ trên, ta được A = (3; 0).
0,25
Gọi d là đường thẳng đi qua K(6; 6) và vuông góc với ∆, ta có phương trình của
d là: 3 4 6 0.x y− + = Từ đây, do H là giao điểm của ∆ và d nên tọa độ của H là
nghiệm của hệ phương trình:
{4 3 12 03 4 6 0.x yx y+ − =− + =
Giải hệ trên, ta được 6 12; .
5 5
H =
Suy ra 12 36; .
5 5
D = −
Do đó, trung điểm F của OD có tọa độ là 6 18;
5 5
−
và đường thẳng OD có
phương trình: 3 0.x y+ =
Suy ra phương trình của 2d là: 3 12 0.x y− + =
Do đó, theo (2), tọa độ của B là nghiệm của hệ phương trình:
{4 3 12 03 12 0.x yx y+ − =− + =
Giải hệ trên, ta được B = (0; 4).
0,25
Câu 8
(1,0 điểm) Gọi M là trung điểm của AB, ta có
3 1 1
; ; .
2 2 2
M = −
Vì (P) là mặt phẳng trung trực của AB nên (P) đi qua M và ( 1; 1; 1)AB = − −
là
một vectơ pháp tuyến của (P).
0,25
Suy ra, phương trình của (P) là: 3 1 1( 1) ( 1) 0
2 2 2
x y z − − + − + − + =
hay: 2 2 2 1 0.x y z− + − =
0,25
Ta có
2 2 2
| 1| 1( , ( )) .
2 32 ( 2) 2
d O P −= =
+ − +
0,25
Do đó, phương trình mặt cầu tâm O, tiếp xúc với (P) là: 2 2 2 1
12
x y z+ + =
hay 2 2 212 12 12 1 0.x y z+ + − =
0,25
Câu 9
(0,5 điểm)
Không gian mẫu Ω là tập hợp gồm tất cả các cặp hai bộ 3 câu hỏi, mà ở vị trí
thứ nhất của cặp là bộ 3 câu hỏi thí sinh A chọn và ở vị trí thứ hai của cặp là bộ
3 câu hỏi thí sinh B chọn.
Vì A cũng như B đều có 310C cách chọn 3 câu hỏi từ 10 câu hỏi thi nên theo quy
tắc nhân, ta có ( )2310( ) C .n Ω =
0,25
Kí hiệu X là biến cố “bộ 3 câu hỏi A chọn và bộ 3 câu hỏi B chọn là giống
nhau”.
Vì với mỗi cách chọn 3 câu hỏi của A, B chỉ có duy nhấFile đính kèm:
de_thi_minh_hoa_thpt_quoc_gia_nam_2015_mon_toan_co_dap_an.pdf

